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We investigate the condensation phenomena of conserved-mass aggregation �CA� with mass-dependent
diffusion rate on scale-free networks �SFNs�. In the model, the mass m of a node isotropically diffuses to one
of directly linked nodes with rate D�m�=m−�, where ��0. With rate �, unit mass is chipped from the mass
and also isotropically diffuses. It was shown that no condensation phase transitions occur on regular lattices.
However, on SFNs with degree distribution P�k��k−�, we show from mean-field approximation that the model
exhibits various types of condensation phenomena according to � and �. There exists crossover
�c= ��−2� / ��−1� over which a system undergoes the same type of the condensation as that of zero-range
process with jumping rate p�m�=m� regardless of ���2�. We find �=1−� for �c���1 and �=0 for ��1.
For ���c, however, the diffusion of masses cannot be ignored and so a system exhibits different behavior
according to the network structure, i.e., �. For ��3, a system exhibits the behavior on regular lattice. For
��3, the condensation always occurs for any density with non-power-law background mass distribution. We
also numerically confirm the mean-field predictions. Therefore, the network structure leads to the various
condensation phenomena of the CA model unlike on regular lattices.
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I. INTRODUCTION

Nonequilibrium condensation phenomena have been ob-
served in a wide variety of transport systems ranging from
traffic flow to polymer gels �1–8�. These systems evolve via
basic microscopic dynamics ubiquitous in nature such as dif-
fusion, aggregation upon contact, and fragmentation of ag-
gregates.

The nonequilibrium steady states of these systems can be
classified into two types of phases: the condensed phase and
the fluid phase, respectively. In the condensed phase, a finite
fraction of total particles condenses on a single site �infinite
aggregate�. On the other hand, particles are uniformly dis-
tributed without an infinite aggregate in the fluid phase. As
the rates of dynamic processes vary, a system may undergo
the condensation transitions between the two phases at a cer-
tain critical density of particles 
c �9–13�.

The simplest mass-transport model exhibiting the conden-
sation is zero-range process �ZRP� �9�. In ZRP, each site i
may contain an integer number of particles mi and each par-
ticle jumps to one of the nearest neighboring sites with jump-
ing rate pi�mi�. The mass-dependent jumping rate reflects the
interaction between particles occupying the same site and
describes various condensations such as traffic jam �1�,
bunching of buses �2�, and coalescence of shaken steel balls
�3�. On scale-free networks, recent studies showed that the
ZRP with jumping rate p�m�=m� exhibits the nontrivial de-
pendence of the condensation on the network properties
�10,11�.

Another important class of condensation phenomena has
been observed in various physical situations such as polymer
gels �4�, the formation of colloidal suspensions �5�, river net-
works �6,7� and cloud formation �8�. These systems include
the microscopic processes of diffusion, aggregation upon

contact, and fragmentation of masses. Conserved-mass ag-
gregation �CA� model is the simplest model incorporating
these microscopic processes �12–18�. In one-dimensional CA
model, each site may have an integer mass. The mass mi of a
site i moves either to site i−1 or to site i+1 with unit rate;
then mi→0 and mi�1→mi�1+mi �diffusion�. With rate �,
unit mass chips off from site i and moves to one of the
nearest neighboring sites; mi→mi−1 and mi�1→mi�1+1
�chipping�. The chipping is the special case of the fragmen-
tation which allows the breakup of more than unit mass. The
generalization to higher dimensions including the fragmenta-
tion is straightforward.

As total masses are conserved, the total density 
 and the
rate � determine the phase of the CA model. The condensa-
tion transition arises from the competition between diffusion
and chipping process. It was shown that the existence of the
condensation transitions depends on the spatial disorder �14�,
the symmetry of moving directions �15�, the constraints on
the rate of diffusion and fragmentation �16,17�, and also the
underlying network structure �18–20�.

The prototype of the CA model is the symmetric CA
�SCA� model in which the directions of diffusion and chip-
ping processes are isotropic �12,13�. In the SCA model, the
single-site mass distribution P�m� was shown to undergo
phase transitions on regular lattices �12�. For a fixed �, as 

varies across the critical value 
c���, the behavior of P�m�
for large m was found to be �12�

P�m� � �e−m/m�

 � 
c���

m−� 
 = 
c���
m−� + infinite aggregate 
 � 
c��� ,

� �1�

where 
c���=��+1−1 and �=5 /2. 
c and � are independent
of the spatial dimension d �13�.

In realistic situations such as polymers in solution under-
going the gelation transitions, the diffusion of polymers may
depend on their masses which leads to studies on the mass-*Corresponding author; ykim@khu.ac.kr
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dependent diffusion of polymers �16,21,22�. For the SCA
model on regular lattices, it was shown that when the diffu-
sion rate depends on mass as D�m��m−�, with ��0, the
model exhibits different behavior according to �. For
0���2, a finite-sized system undergoes the condensation
transition of Eq. �1�. However, the 
c diverges with the vol-
ume of system V as 
c�V
 with 
=� / �2−��. As a result,
the condensed phase eventually disappears in the thermody-
namic limit V→� so a system is always in the fluid phase
�16�. On the other hand, for ��2, the diffusion of masses is
negligible and so the model exhibits the behavior of �=�.
The �=� case is a ZRP in which unit mass is chipped from
mass m��2� with rate �. It was shown for �=� that masses
are uniformly distributed with P�m ,
�	e−m/
 /m without the
transitions �16�.

Critical phenomena on complex networks have been ex-
tensively studied because the interplay between particle in-
teraction and underlying network structure leads to the
anomalous behavior distinct from standard mean-field be-
haviors on regular lattices �23�. On scale-free networks
�SFNs�, it was shown that ZRP �10,11� and CA models
�18–20� also exhibit the anomalous condensation transitions
distinct from those on regular lattices. These mass-
transporting models may model the transmission of data
packets between computers. For instance, in ZRP, the frag-
mentation rate p�n� corresponds to the amount of data pack-
ets that can be handled in unit time �10�. In CA model, the
diffusion rate may model the time needed to process all data
packets of each node.

In this paper, we study the CA model with mass-
dependent diffusion rate on SFNs and investigate the effect
of the network structure on the condensation phenomena as
the natural extension of previous studies �16,18–20�. As the
diffusion rate depends on the mass of polymers in polymer
gelation transitions, the speed of processing all data packets
also depends on the total amount of packets. We consider the
diffusion rate of D�m�=m−�, with ��0 as in �16�. As we
shall see, the interplay between the mass-dependent diffusion
rate and the structure of SFNs leads to two types of conden-
sations and the nontrivial crossover between them according
to � and �.

From a mean-field-type balance equation for the
mass of an aggregate, we examine the stability of
an aggregate against diffusion, i.e., �. We show that on
SFNs with the degree exponent �, there exists a crossover
�c= ��−2� / ��−1� over which the diffusive motion of masses
is negligible. Intriguingly, �c varies with � unlike on regular
lattices. Furthermore, as � decreases, �c also decreases.
Hence, as the inhomogeneity of network structure increases,
the diffusion of masses is more suppressed.

For ���c, the diffusive motions of masses cannot be
ignored and the SCA model exhibits different behavior ac-
cording to �. For ��3, the model exhibits the same type of
behavior as that on regular lattices. However, for ��3, the
condensation always occurs for any density as the ordinary
SCA model of �=0 due to the strong inhomogeneity of de-
gree distribution �18�. It means that the weak diffusion of
��0 does not affect the behavior of �=0 on SFNs with
��3.

On the other hand, for ���c, the diffusion of masses is
negligible and the SCA model is effectively mapped onto the

ZRP with jumping rate p�m�=m�, with ��0 �10�. Unlike on
regular lattices, the steady state of ���c is not described by
the ZRP with constant jumping rate on SFNs. To see the
mapping to the ZRP for ���c, we consider the mass �mD
diffusing out from a node with mass m in unit time. With
diffusion rate D�m�=m−�, �mD is given by �mD=m1−�. Since
�mD always satisfies �mD�m, the diffusion can be thought
as fragmentation of mass �mD from mass m for ���c. On
the other hand, in the ZRP with jumping rate p�m�=m�, the
mass �particles� �mC jumping out in unit time is given by
�mC=m� �10,11�. Hence the mass �mD corresponds to �mC
in ZRP with jumping rate p�m�=m1−� in addition to the chip-
ping process of unit mass ��mC=1� with rate �. As a result,
for ���c, two jumping processes compete with each other
so the resultant steady state is characterized by the dominant
one. For ��1, we have �mD�1 so the chipping process is
dominant; �=0 for ��1. As a result, the SCA model exhib-
its the same type of condensation as that of the ZRP with
constant jumping rate. However, for �c���1, because of
�mD�1, the jumping process with rate p�m�=m1−� is domi-
nant; �=1−� for �c���1. Therefore, the SCA model ex-
hibits the same type of the condensation as that of the ZRP
with the jumping rate p�m�=m1−�.

The paper is organized as follows. We introduce the SCA
model on SFNs in Sec. II. We discuss the condensation phe-
nomena of the SCA model on SFNs in Sec. III and present
simulation results in Sec. IV. Finally, we summarize our re-
sults in Sec. V.

II. SCA MODEL WITH DIFFUSION RATE D(m)=m−�

ON SCALE-FREE NETWORKS

We consider a network with N nodes and K links. The
degree ki of a node i is defined as the number of links con-
nected to other nodes. The average degree of a node 
k� is
given as 
k�=2K /N. The degree distribution P�k� is a power-
law distribution of P�k��k−� for SFNs. For the construction
of SFN, we use a static model �24� instead of preferential
attachment algorithm �25�. N nodes are indexed by an integer
i�i=1. . .N�. The weight pi= i−� is assigned to each node,
where � is a control parameter in �0,1�. Next select two
different nodes i and j with probabilities pi /�1

Npk and
pj /�1

Npk and add a link between them unless a link already
exists. We repeat this process until the number of total links
is K. The degree exponent � is given as �= �1+�� /� �24�. In
static model, it is desired to use large 
k� to construct fully
connected networks. In simulations, we use 
k�=4.

The SCA model with diffusion rate D�m�=m−� is defined
on SFNs as follows. Each node may have an integer number
of particles and the mass on a node is defined as the number
of particles on the node. Initially M particles are randomly
distributed over N nodes with a given conserved density

=M /N. Next a node i with mass mi is randomly chosen. A
node j among the nodes directly linked to node i is also
chosen randomly. Then one of the following events occurs:

�i� Diffusion. With rate D�mi�=mi
−�, the mass mi moves to

the node j. If the node j already has mass mj, then the ag-
gregation takes place; mi→0 and mj→mj +mi.

�ii� Chipping. With rate �, unit mass is chipped from mi
and moves to the node j; mi→mi−1 and mj→mj +1.
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The �=0 case is the ordinary SCA model on SFNs �18�.
On SFNs with ��3, the ordinary SCA model exhibits the
same type of condensation transitions as those on regular
lattices. Hence P�m� follows the behavior of Eq. �1� with
�=5 /2. However, the critical line 
c��� depends on � �18�.
For ��3, an infinite aggregate with a finite fraction of total
mass always forms for any density due to the strong inho-
mogeneity of degree distribution. The diffusion of masses
also always leads to a background mass distribution. Since
the condensation always occurs with a background mass dis-
tribution, the condensation for ��3 is incomplete unlike in
ZRP where no background masses exist �complete conden-
sation�.

For ��0, an infinite aggregate should always occur for
any 
. It comes from the fact that the mass gain of an infinite
aggregate by the diffusion is proportional to N
�
. However,
an infinite aggregate always losses only unit mass by the
chipping process. Hence, once an infinite aggregate is
formed, it is always stable against the chipping process. As a
result, the complete condensation always occurs for ��0.
Thus we only consider the cases with ��0.

III. CONDENSATION PHENOMENA ON SFNS

On regular lattices, the SCA model with D�m�=m−� ex-
hibits different behavior according to the values of � as men-
tioned in Sec. I �16�. For 0���2, the diffusion leads to the
same type of the transitions with ��2 as those of the �=0
case in finite-size systems. However, the strength of the dif-
fusion is not strong enough to maintain the transitions in the
thermodynamic limit. On the other hand, the diffusion can be
ignored for ��2 and the SCA model is reduced to the ZRP
with a constant jumping rate where no condensation takes
place on regular lattices �9�. As a result, there exists a cross-
over �c over which the diffusion is ignored and so the SCA
model is reduced to a ZRP. On SFNs, one also expects the
existence of �c for ��0. However, as we shall see, since the
degree distribution is not uniform, �c depends on the degree
distribution, i.e., �.

To find �c on SFNs, we assume an infinite aggregate with
mass ma on a hub node with the maximal degree kmax in a
network. An infinite aggregate always forms and stays on the
hub node in ZRP �10�, while it diffuses around on a network
in CA models �18–20�. Therefore, examining the stability
condition of the aggregate against diffusion, one can find �c
on SFNs. To simplify calculation, we only consider an infi-
nite aggregate without background masses which gives
higher-order corrections. The mass diffusing out from the
hub in unit time is ma

1−�, which is less than ma itself for
��0. Therefore, the diffusion can be thought as the frag-
mentation of mass ma

1−� from ma. We apply the same method
used in the SCA model with mass-dependent fragmentation
to the present model as follows �20�.

The loss of ma by diffusion in unit time is ma
1−�. The mass

ma
1−� moves to one of the linked nodes to the hub with the

probability 1 /kmax. Hence, each node linked to the hub has a
mass ma

1−� /kmax on average. As we neglect background
masses in our calculation, the gain from the linked nodes by
the diffusion is given as

�
�=1

kmax

�ma
1−�/kmax�1−�/k�, �2�

where k�
−1 is the hopping probability from node � to the

hub node. We approximate the sum ��1 /k� to the
average 
��1 /k��hub. 
¯ �hub denotes the average over the
nodes linked to the hub. Then we have 
��

kmax1 /k��hub
=kmax�kmaxg�k� /kdk, where g�k� is the degree distribution of
the nodes directly linked to the hub. In the limit N→�, the
number of terms �kmax� in the sum diverges, so we approxi-
mate g�k� to P�k�. Then we have 
��1 /k��hub�kmax
1 /k�,
with 
1 /k�=�kmaxP�k� /kdk. Since 
1 /k� is finite, we have

��1 /k��hub�kmax. Hence, we approximately obtain the gain

�2� as ma
�1 − ��2

kmax
� .

For ma
�1 − ��2

kmax
� �ma

1−�, the aggregate on the hub is stable
against diffusion. Otherwise the aggregate diffuses around on
a network. With ma�N and kmax�N1/��−1� �25�, one gets the
stability condition of the aggregate on the hub as

N1−� � N�1 − ��2+�/��−1�. �3�

From the condition �3�, the crossover �c is given as

�c = �� − 2�/�� − 1� . �4�

For ���c, the aggregate on the hub node is unstable against
diffusion and one cannot neglect the diffusive motion of
masses. On the other hand, for ���c, the aggregate on the
hub is stable against diffusion, so one can neglect the diffu-
sive motion of masses. Hence, the SCA model is reduced to
a ZRP for ���c. As on regular lattices, the SCA model
exhibits the crossover to a ZRP at �c which varies with �. In
the next two sections we discuss the condensation phenom-
ena of the SCA model and the corresponding ZRP in detail.

A. SCA model for ���c

We recently showed that the ordinary SCA model on
SFNs exhibits different behavior depending on the network
structure, i.e., � �18�. For ��3, the fluctuation of degree
distribution is not strong enough to change the mean-field
behavior on regular lattices. However, for ��3, the fluctua-
tion 
k2� diverges and the network structure is highly inho-
mogeneous in degree distribution �hub structure�. As a result,
the condensation phenomena on SFNs with ��3 are quite
different from that on SFNs with ��3 �18,20�.

Similarly, it is expected that the SCA model with
D�m�=m−� exhibits different behavior depending on �. For
��3, the SCA model is expected to exhibit the same type of
condensation phenomena as that of regular lattices. Hence,
finite-sized systems undergo the condensation transitions at a
certain 
c, which diverges with network size N as 
c�N
,
with 
=� / �2−�� for 0����c. Since 
c diverges with N,
the transitions eventually disappear in the thermodynamic
limit N→�.

On the other hand, for ��3, the ordinary SCA model
with �=0 exhibits the incomplete condensation with a finite
background mass distribution for any mass density 
 �18�.
Due to the hub structure, the chipping process, in addition to
diffusion, also leads to the condensation unlike on SFNs with

CONSERVED-MASS AGGREGATION MODEL WITH MASS-… PHYSICAL REVIEW E 79, 061115 �2009�

061115-3



��3 where the chipping processes scatter masses to lead the
fluid phase. Therefore, there are no processes to prevent the
condensation on SFNs with ��3. However diffusing aggre-
gates scatter masses over a network via chipping processes.
As a result, a stable background mass distribution emerges.
Since the background distribution should exist for any diffu-
sion rate, one also expects the incomplete condensation on
SFNs with ��3 for 0����c.

B. Mapping onto a ZRP for ���c

For ���c, one can neglect the diffusion of masses, so the
SCA model is mapped onto a ZRP with a certain jumping
rate. For the mapping to a ZRP, we consider the mass �mD
diffusing out from a node with mass m in unit time. With
diffusion rate D�m�=m−�, �mD is given by �mD=m1−�,
which is less than the total mass m itself for ��0. Therefore,
the diffusion can be thought as the fragmentation of mass
m1−� from a node with mass m. On the other hand, in the
ZRP with jumping rate p�m�=m�, the mass �particle� �mC
jumping out in unit time is given by �mC=m� �10,11�. Since
the diffusion corresponds to the fragmentation for ���c, the
mass �mD can be thought as �mC in the ZRP with jumping
rate p�m�=m1−�.

In addition to the diffusion, there is the chipping process
of unit mass ��mC=1� with rate � which corresponds to the
jumping rate P�m�=�, i.e., �=0. As a result, for ���c, the
SCA model is mapped onto the ZRP with two jumping rates
p�m�=m1−� and p�m�=�. The two jumping processes com-
pete with each other, so the resultant steady state of ���c is
characterized by the dominant one.

For ��1, we have �mD�1 so the chipping process �unit-
mass dissociation� is dominant; �=0 for ��1. As a result,
the SCA model exhibits the same type of condensation as
that of the ZRP with constant jumping rate for ��1. How-
ever, for �c���1, because of �mD�1, the jumping pro-
cess with rate p�m�=m1−� is dominant; �=1−� for
�c���1. Therefore, the SCA model exhibits the same type
of the condensation as that of the ZRP with p�m�=m1−� for
�c���1.

On SFNs with ��2, the ZRP with p�m�=m�

undergoes the complete condensation for any 
 when
0����c=1 / ��−1� �10�. For ���c, the condensation does
not occur. In the present model, the crossover �c is given as
�c=1−�c=1 / ��−1� over which the mapping to the ZRP is
lost. The same �c of the present model and the ZRP of �10�
reflects that our mapping to the ZRP is correct for ���c. In
the ZRP with p�m�=m�, the average mass mk of a node with
degree k exhibits different behavior according to � �10�. For
���c, mk scales with degree k as mk= �k /kc� for k�kc and
mk= �k /kc�1/� for k�kc. kc is a certain crossover degree at
which mkc

=1 �10�. Especially at �=0, mk linearly increases
until k�kmax and jumps to the value m�	
N at kmax.

In the SCA model of ���c, one also expects the cross-
over of mk at a certain kc�. For ��1, p�m� is a constant, so
mk scales as mk�k and jumps to m�	
N at kmax. For
�c���1, the jumping rate p�m�=m1−� should lead to the
crossover of mk at a certain kc�, i.e., mk�k for k�kc� and
mk�k1/�1−�� for k�kc�. However, mk for small masses is ex-

pected to follow the behavior of the SCA model because one
cannot neglect the diffusion of small masses. Hence, the
mapping to the ZRP is lost for small masses. In ordinary
SCA model �18�, mk scales as mk=
k / 
k� �26�. Hence, we
expect mk=
k / 
k� for k�kc�. From mk=
k / 
k� for k�kc� and
mk= �k /kc�1/�1−�� for k�kc�, one finds kc� as kc���kc�1/�. Be-
cause of ��1, kc� is larger than that of the ZRP.

IV. MONTE CARLO SIMULATION RESULTS

A. For ���c

We simulate the SCA model with D�m�=m−� on SFNs of
size N up to 2�104. We set the average degree 
k�=4. We
also set �=1 for all simulations. We run simulation up to 107

Monte Carlo time steps and measure P�m� in the steady
state. For ���c, the SCA model is expected to exhibit the
mean-field behavior on regular lattices for ��3, while the
incomplete condensation always takes place for ��3.

First, we consider the SCA model on SFNs with ��3.
Hence, finite-sized systems undergo the condensation phase
transition from the fluid phase into the condensed phase at a
certain critical density 
c which diverges with network size N
as 
c�N
, with 
=� / �2−�� �16�. We perform simulations
on SFNs with �=4 with �=0.1 and 0.3. Figure 1 shows
P�m� for N=104. As shown, P�m� undergoes the condensa-
tion transition of Eq. �1� at a certain 
c for both � values.
Using the scaling plot of m�P�m�, we estimate �=1.91�5� for
�=0.1 and �=1.76�5� for �=0.3, respectively �insets of Fig.
1�. Compared to the mean-field �, �=2−� /2 �16�, our esti-
mates agree well with the mean-field value �=1.9 for
�=0.1 and 1.7 for �=0.3, respectively. As on regular lat-
tices, � is smaller than 2, which indicates a diverging 
c with
N �16�. Therefore, the condensation transition eventually dis-
appears in the thermodynamic limit N→�.

To estimate 
c, we use the following method �17,20�. In
the steady state, P�m� scales as �13�

FIG. 1. The plot of P�m� for ���c=2 /3 on SFNs with �=4.
The main plots show P�m� for �a� �=0.1 and �b� 0.3 with �=1 and
N=104. Solid and dashed lines correspond to �a� 
=10 and 0.1 and
�b� 
=20 and 0.1, respectively. In each panel, inset shows the scal-
ing plot m�P�m�, with �a� �=1.91 and �b� 1.76.
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P�m� = m−�f�m/N�� +
1

N
��m − �
 − 
c�N� . �5�

From the conservation of total masses, 
c is given as

c=
−
�, where 
� is the density of an infinite aggregate.
The exponent � is the crossover exponent �13�. From the fact
that the background distribution does not change for 
�
c,
one can estimate 
c from the relation 
c=�1

m0mP�m�dm in the
condensed phase, where m0 is the cutoff mass at which the
background distribution terminates.

We measure P�m� in the condensed phase with 
=10 and
N up to 2�104 for �=0.1 and 0.3. With the method dis-
cussed above, we measure 
c and plot in Fig. 2. All the data
in Fig. 2 satisfy the mean-field result 
c�N
, with

=� / �2−�� very well �16�. Therefore, we conclude that the
SCA model with ���c follows the mean-field behavior of
�16� on SFNs with ��3 as expected.

For ��3, the incomplete condensation is expected to oc-
cur for any 
. For �=2.8, we measure P�m� with �=0.1. In
Fig. 3, we plot p�m� with 
=1.0 for various N up to
2�104. As shown, the condensation occurs, but P�m� is nei-
ther simple power law nor simple exponential. We call the
P�m� quasiexponential �20�. The cutoff mass m0 increases
with N, which indicates the background distribution is stable
in the thermodynamic limit. The background mass density 
b
defined as 
b=�m0mP�m� tends to saturate to a finite value
�inset of Fig. 3�. The finite 
b and the quasiexponential P�m�
characterize the incomplete condensation �20�. Therefore, we
are convinced that the incomplete condensation always oc-
curs for ��3 and ���c.

B. For ���c

For ���c, the present model is mapped onto the ZRP
with jumping rate p�m�=m�. The exponent � is given as

�=1−� for �c���1 and �=0 for ��1. Since the
complete condensation always occurs in the ZRP on SFNs
with ��2 �10�, the P�k� distribution only changes the
�c= ��−2� / ��−1�. For �c���1, the average mass mk of a
node with degree k linearly increases with k for k�kc� and
algebraically increases as k1/�1−�� for k�kc�. kc� is the cross-
over degree of the present model. For ��1, mk linearly in-
creases until k�kmax and jumps to the value m�	
N at kmax.
We simulate the SCA model on SFNs with �=4 and
2.8, where �c=2 /3 for �=4 and �c	0.44 for �=2.8,
respectively.

For �c���1, we run simulations up to 5�104 time
steps and measure mk in the steady state. For �=4, we mea-
sure mk at �=0.67�	�c� with 
=1 and 0.8 with 
=4. Figure

FIG. 2. The plot of 
c�N� for ���c=2 /3 on SFNs with �=4. In
each panel, the symbols correspond to 
c of �a� �=0.1 and �b� 0.3
for various N from 5�103 to 2�104. In each panel, solid line
corresponds to the line with the slope 
=� / �2−��.

FIG. 3. The plot of P�m� for �=0.1 on SFNs with �=2.8. Inset
shows 
b for various N.
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FIG. 4. The plot of mk. �a� mk at �=0.67 with 
=1 and
�=0.8 with 
=4 for �=4. �b� mk at �=0.5 with 
=1 and �=0.7
with 
=4 for �=2.8. In each panel, solid and dashed lines corre-
spond to the line with the slope 1 / �1−�� with the � of each sym-
bol. Dotted line is the line with unit slope.
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4�a� shows mk for �=0.67 and 0.8. For k�kc�, the mk of each
� algebraically increases with k as k1/� and collapses onto the
line with the expected slope 1 /�=1 / �1−��, i.e., 1 /�=5.0 for
�=0.8 and 1 /�	3.0 for 0.67, respectively. For �=2.7, we
measure mk at �=0.5 with 
=1 and 0.7 with 
=4. As ex-
pected for k�kc�, mk of each � collapses onto the line with
the expected slope, 1 /�=2 for �=0.5 and 10/3 for �=0.7
�Fig. 4�b��.

For ��1, we measure mk at �=1.0 and 1.2 with 
=1 for
�=4. We run simulations up to 105 time steps and average
mk over 2400 independent runs. As shown in Fig. 5, mk lin-
early increases for k�kmax and fast increases to the maxi-
mum value m�	104 at about k	kmax. The inset of Fig. 5
shows mk of a single run at �=1.2, which clearly jumps to
m�	104 at kmax. Sample average smoothes out the jump of
mk at kmax. Since most of masses condense on the hub node,
the complete condensation occurs for ��1. As a result, the
same type of the complete condensation as that of the ZRP
with constant jumping rate takes places for ��1 as ex-
pected.

Finally, we discuss the effect of diffusion of small
masses for ���c. For sufficiently small masses with
�mD=m1−�	m for a given �, one cannot neglect diffusive
motions even for ���c where we neglect the diffusion of
big masses. Hence, such a small mk is expected to follow the
behavior of the ordinary SCA model of �=0, i.e.,
mk=
k / 
k� �18,26�. However, for ��1, �mD always satisfies
�mD�1, so that the diffusion of all masses is suppressed
except m=1. Hence, small masses are expected to follow the
behavior of �=0 for ��1 unlike big masses.

For �c���1, we measure mk for various 
 up to 20 on
SFNs with �=4 with �=0.8 and N=104. Figure 6�a� shows
the dependence of mk on 
. In Fig. 6�b�, we plot mk
k� /

against k, which collapse on a single curve as expected. On
the other hand, for ��1, as shown in Fig. 5, mk of �=1.0
and 1.2 do not overlap each other despite of the same den-
sity, 
=1. It means that the behavior of �=0 for small
masses disappears for ��1 as expected. Therefore, for small
masses, the feature of the ordinary SCA model remains for
��1.

V. SUMMARY

In summary, we investigate the condensation phenomena
of symmetric SCA with mass-dependent diffusion rate on

SFNs. In the model, the mass m of a node isotropically dif-
fuses to one of directly linked nodes with rate D�m�=m−�,
where ��0. With rate �, unit mass is chipped from the mass
and also isotropically diffuses. On regular lattices, it was
shown that the SCA model exhibits the crossover to ZRP
with constant jumping rate at �c=2 �16�. Hence, for ���c,
the diffusion of masses does not affect the steady-state prop-
erties.

On SFNs with degree distribution P�k��k−�, we show
from mean-field approximation that the model exhibits vari-
ous types of condensation phenomena depending on � and �.
Examining the stability condition of an aggregate on the hub
node against diffusion, we find �c= ��−2� / ��−1� which var-
ies with � unlike on regular lattices. As the inhomogeneity of
network structure increases, the diffusion of masses is more
suppressed. For ���c, the diffusion of masses can be ig-
nored, so the SCA model is mapped onto the ZRP with jump-
ing rate p�m�=m� as follows.

The masses �mD diffusing out from a node in unit time
are given by �mD=m1−� in the CA model, while the mass
�mC jumping out from a node in unit time is given by
�mC=m� in the ZRP. Comparing �mD to �mC, we find the
exponent � for ���c as �=1−� for ����1 and �=0 for
��1. As in the ZRP on SFNs �10�, the average mass mk of
a node with degree k exhibits the crossover from linear in-
crease to algebraic increase as k1/�1−�� at a certain kc for
�c���1. However, for ��1, mk linearly increases until
the maximal degree kmax and jumps at kmax. We numerically
confirm the behavior of mk for different � values.

For ���c, however, the diffusion of masses cannot be
ignored, which leads to the different condensation phenom-
ena according to the network structure, i.e., �. For ��3, a
system exhibits the mean-field behavior on regular lattices.
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FIG. 5. The plot of mk for �=1.0 and 1.2 with 
=1 on SfNs
with �=4. Inset shows mk of a single rune with �=1.2.
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Hence, finite-sized systems undergo the condensation transi-
tion at a certain 
c, which diverges with network size N as
N
, with 
=� / �2−�� as on regular lattices. As a result,
the condensation transition eventually disappears in the
thermodynamic limit. However, for ��3, due to the
strong inhomogeneity of degree distribution, the condensa-
tion always occurs for any density as in the ordinary SCA
model with �=0 �18�. We numerically confirm the
mean-field predictions for ��3 and the existence of the in-
complete condensation for ��3. The interplay of the
diffusion rate and the network structure leads to the rich

behaviors of the SCA model which are not observed on regu-
lar lattices.
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